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Maximum	 likelihood	 principal	 component	 analysis	 (MLPCA)	 was	 originally	 proposed	 to	

incorporate	 measurement	 error	 variance	 information	 in	 principal	 component	 analysis	 (PCA)	

models.	MLPCA	can	be	used	to	fit	PCA	models	in	the	presence	of	missing	data,	simply	by	assigning	

very	 large	 variances	 to	 the	non-measured	values.	An	 assessment	of	maximum	 likelihood	missing	

data	imputation	is	performed	in	this	paper,	analysing	the	algorithm	of	MLPCA	and	adapting	several	

methods	for	PCA	model	building	with	missing	data	to	its	maximum	likelihood	version.	In	this	way,	

known	data	regression	(KDR),	KDR	with	principal	component	regression	(PCR),	KDR	with	partial	

least	 squares	 regression	 (PLS),	 and	 trimmed	 scores	 regression	 (TSR)	methods	 are	 implemented	

within	the	MLPCA	method	to	work	as	different	 imputation	steps.	Six	data	sets	are	analysed	using	

several	percentages	of	missing	data,	comparing	the	performance	of	the	original	algorithm,	and	its	

adapted	regression-based	methods,	with	other	state-of-the-art	methods.	 	

Keywords:	 maximum	 likelihood	 principal	 component	 analysis,	 missing	 data,	 regression-based	

methods,	PCA	model	building,	trimmed	scores	regression	

	

	1.	 INTRODUCTION	

Principal	 component	analysis1	 (PCA)	 is	one	of	 the	most	applied	methods	 for	data	understanding.	

The	original	variables	are	projected	onto	the	latent	space,	where	data	most	vary,	and	a	new	set	of	
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uncorrelated	 variables	 are	 obtained,	 the	 principal	 components	 (PCs),	 summarizing	 the	 most	

relevant	 features	 of	 data.	 Wentzell	 et	 al.2	 proposed	 in	 1997	 a	 new	 PCA	 approach,	 based	 on	

maximum	 likelihood	 fitting,	 called	 maximum	 likelihood	 PCA	 (MLPCA).	 This	 methodology	 allows	

incorporating	 information	 about	 the	measurement	 errors	 in	 the	model.	MLPCA	 has	 been	widely	

applied	 in	 several	 works	 within	 chemistry	 and	 biology,	 e.g.	 to	 analyse	 reflectance	 Fourier	

transformed	 infrared	 (FTIR)	microspectroscopic	 data3	 and	 ion	mass	 spectroscopic	 data4,	 to	 fault	

detection	in	process	industry5,	to	the	characterization	of	measurement	errors	in	nuclear	magnetic	

resonance	 (NMR)	 data6	 and	 gene	 expression	 data7,	 to	 determine	 the	 appropriate	 number	 of	

reactions	 in	 stoichiometric	 modelling8,	 and	 as	 a	 useful	 preprocessing	 tool	 for	 metabolomic,	

proteomic,	transcriptomic9	and	environmental10	data	analysis.	

Shortly	 after	 the	publication	of	 the	 original	MLPCA	algorithm,	 an	 application	of	 this	method	was	

proposed	 addressing	 the	missing	 data	 (MD)	problem	 in	 PCA	model	 building	 (PCA-MB)11.	MLPCA	

deals	with	the	missing	values	by	assigning	them	large	variances	prior	to	implementing	the	method,	

which	guides	the	algorithm	to	fit	a	PCA	model	disregarding	these	data	points.	The	MLPCA	approach	

for	 MD	 has	 been	 applied	 successfully	 in	 the	 literature	 to	 fluorescent,	 chromatographic,	 near-

infrared	spectroscopic11,	spectrophotometric12,	and	environmental13	data.	

Folch-Fortuny	 et	 al.14	 address	 the	 problem	 of	 PCA-MB	 with	 missing	 data.	 In	 this	 work,	 several	

methods	originally	proposed	for	PCA	model	exploitation	(PCA-ME)15,16,	i.e.	when	a	fixed	PCA	model	

is	used	to	infer	missing	values	in	new	incomplete	observations,	are	adapted	to	the	model	building	

context.	 Basically,	 the	 idea	 was	 to	 adapt	 the	 known	 iterative	 algorithm	 (IA)17	 for	 PCA-MB	 by	

replacing	the	prediction	of	the	PCA	model	to	that	resulting	when	we	treat	each	incomplete	row	in	

the	data	 set	 as	 a	new	observation	with	missing	values,	 and	applying	 the	projection	 to	 the	model	

plane	 (PMP)	method	 for	PCA-ME18.	 This	 adaptation	 arose	 from	 the	 fact	 that	 PMP	 is,	 under	 some	

general	conditions,	equivalent	to	IA	and	the	minimization	of	the	squared	prediction	error	(SPE)	for	

PCA-ME,	as	proved	in	15.	Thus,	the	aim	in	14	was	to	assess	whether	this	equivalence	held	in	the	PCA-

MB	context.	

The	regression-based	methods,	proposed	in	15,	were	also	adapted,	jointly	with	PMP,	to	the	PCA-MB	

context	 in	 14.	 These	methods	 are:	 known	 data	 regression	 (KDR),	 KDR	with	 principal	 component	
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regression	(PCR),	KDR	with	partial	 least	squares	regression	(PLS)	and	trimmed	scores	regression	

(TSR).	 All	 these	methods	 impute	 the	missing	 values	 in	 a	 data	 set	 by	 fitting	 different	 regression-

based	schemes	between	the	available	data	and	the	missing	positions.	Several	other	methods	were	

compared	 to	 the	 previous	 ones	 in	 14,	 including	 the	 modified	 NIPALS	 algorithm19,	 the	 nonlinear	

programming	approach20	and	multiple	imputation	by	data	augmentation21.	The	conclusion	was	that	

TSR	 represents	 a	 good	 compromise	 solution	between	prediction	quality,	 robustness	 against	 data	

structure	 and	 computation	 time14;	 outperforming	 other	 approaches	 implemented	 in	 commercial	

software	 as	 ProSensus22,	 SIMCA23	 and	 PLS	 Toolbox24.	 TSR	 and	 most	 of	 the	 other	 approaches	

compared	 in	 14	 are	 now	 implemented	 in	 a	 freely	 available	 user-friendly	 MATLAB	 toolbox25	

(http://mseg.webs.upv.es).	

Nelson26	 showed	 the	 equivalence	 between	 the	 scores	 calculation	 by	 columns	 in	MLPCA	 and	 the	

PMP	algorithm	for	PCA-ME.	Here,	we	are	going	 to	prove	 the	equivalence	between	the	 imputation	

step	by	columns	in	MLPCA	algorithm	and	the	adapted	PMP	method	for	PCA-MB.			

The	 aim	 of	 this	 paper	 is,	 thus,	 to	 answer	 three	 questions	 that	 arise	 from	 the	 aforementioned	

equivalence:	

i)	Once	the	algorithms	converge,	are	the	imputed	values	of	MLPCA	and	PMP	for	PCA-MB	equal?	

ii)	Since	TSR	outperforms	PMP,	as	proven	in	14,	if	the	imputation	step	in	MLPCA	is	substituted	by	a	

TSR-based	imputation,	does	the	imputation	outperform	the	original	MLPCA?	

iii)	 In	 any	 case,	 does	 MLPCA,	 or	 its	 adapted	 version	 with	 TSR,	 outperform	 the	 original	 TSR	

algorithm?	

To	 answer	 these	 research	 questions,	 we	 propose	 here	 to	 adapt	 the	 regression-based	methods14	

(KDR,	 KDR	with	 PCR,	 KDR	with	 PLS	 and	 TSR)	 to	 work	 as	 different	 imputation	 steps	 within	 the	

MLPCA	 algorithm,	 providing	 a	 framework	 for	maximum	 likelihood	missing	 data	 imputation.	 The	

performance	of	these	methods	is	compared	to	PMP	and	TSR	methods	using	six	data	sets,	actual	and	

simulated	ones,	from	different	research	areas.		

The	 rest	 of	 the	 paper	 is	 organised	 as	 follows.	 Section	 2	 proves	 the	 equivalence	 between	 the	

imputation	step	by	columns	of	MLPCA	and	the	PMP	method	for	PCA	model	building,	and	describes	
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how	the	regression-based	methods	are	adapted	to	its	maximum	likelihood	(ML)	version.	Section	3	

describes	 the	 data	 sets	 used	 in	 this	 study,	 as	 well	 as	 how	 the	 comparative	 study	 is	 performed.	

Section	4	shows	the	results	of	the	ML	regression-based	methods,	jointly	with	the	original	PMP	and	

TSR	algorithms.	Finally,	the	conclusions	are	highlighted	in	Section	5.		

	

2.	 METHODOLOGY	

Let	X	be	an	N	by	K	matrix,	xiT	its	𝑖!"	row	and	yk	its	𝑘
!"	column.	Each	row	represents	a	point	in	the	𝐾-

dimensional	space	of	the	𝐗	observations,	and	each	column	a	point	in	the	𝑁-dimensional	space	of	the	

𝐗	variables.	Row	𝑖	can	be	decomposed	in	𝐱!! = 𝐱!
!,! + 𝛆!!,	where	𝐱!

!,!	are	the	true	values	and	𝛆!!	are	

their	 measurement	 errors26.	 As	 well,	 column	 𝑘	 can	 be	 decomposed	 in	 its	 true	 and	 error	 parts:	

𝐲! = 𝐲!! + 𝛈! .	 Both	 errors	 are	 assumed	normally	 distributed	 in	 each	 of	 the	𝐾	 and	𝑁	 dimensions,	

respectively.	

The	maximisation	of	the	likelihood	is	obtained	by	minimising	the	following	objective	function:	

𝑆! = (𝐱!! − 𝐱!!)
!

!!!

𝚺!!!(𝐱! − 𝐱!) = (𝐲!! − 𝐲!!)
!

!!!

𝚿!
!!(𝐲! − 𝐲!)	

(1)	

where	 𝚺! 	 is	 the	 covariance	 matrix	 of	 the	 errors	 𝛆!!	 of	 observation	 𝐱!!,	 and	𝚿!	 is	 the	 covariance	

matrix	of	the	errors	𝛈!	of	variable	𝐲k.	The	estimation	of	both	vectors	arise	from:	

𝐱! = 𝐏(𝐏!𝚺!!!𝐏)!!𝐏!𝚺!!!𝐱! 	 (2)	

𝐲! = 𝐔(𝐔!𝚿!
!!𝐔)!!𝐔!𝚿!

!!𝐲!	 (3)	

where	𝐔	(𝑁×𝐴),	𝐃	(𝐴×𝐴)	and	𝐏	(𝐾×𝐴)	represent	the	singular	value	decomposition	of	𝐗 = 𝐔𝐃𝐏! =

[𝐲!. . . 𝐲!] = [𝐱!. . . 𝐱!]!,	using	𝐴	dimensions	or	components.	

MLPCA	algorithm	is	an	alternating	least	squares	procedure	that	starts	imputing	initial	guesses	for	𝐔	

and	𝐏	based	on	the	SVD	decomposition	of	𝐗.	At	each	iteration,	the	algorithm	has	two	steps.	The	first	

one	consists	of	projecting	the	rows	𝐱!!	on	the	columns	of	𝐏,	computing	the	objective	function,	and	

recalculating	𝐔	and	𝐏	from	an	SVD	using	the	estimations.	The	second	step	consists	of	projecting	the	
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columns	𝐲!	 on	 the	 columns	 of	𝐔,	 computing	 also	 the	 objective	 function,	 and	 finally	 recalculating	

again	𝐔	and	𝐏	from	an	SVD.	Convergence	is	achieved	when	the	difference	between	the	estimations	

of	the	observations	are	below	a	specified	threshold27.	

The	 adaptation	 of	 MLPCA	 to	model	 building	 with	missing	 data	 assumes	 uncorrelated	 errors	 for	

both	objects	𝐱!!	and	variables	𝐲! ,	 therefore	matrices	𝚺! 	and	𝚿!	are	diagonal26,27.	 In	this	algorithm,	

large	variances	(10!")	are	assigned	to	 the	missing	measurements,	and	ones	 to	 the	available	ones.	

Therefore,	the	inversion	of	matrices	𝚺! 	and	𝚿!	produces	diagonal	matrices	with	1s	and	0s.	The	ones	

serve	 to	 fit	 these	 specific	 measurements	 in	 the	 PCA	 and	 the	 0s	 to	 disregard	 the	 missing	

measurements	in	the	multivariate	model.	

Let	us	assume	that	row	𝑖	has	missing	values.	The	values	in	this	vector	can	be	rearranged	to	have	the	

missing	values	in	its	first	𝑅! 	positions	without	loss	of	generality,	and	the	remaining	𝐾 − 𝑅! 	available	

values	at	 the	end.	This	partition	 in	xiT,	 induces	a	partition	 in	 the	𝐗	 data	 set,	being	𝐗#	 (𝑁×𝑅!)	 the	

missing	part	and	𝐗*	(𝑁×(𝐾 − 𝑅!))	the	available	part,	according	to	row	i.	Additionally,	this	partition	

can	be	transferred	into	a	SVD	(or	PCA)	model,	𝐗 = 𝐔𝐃𝐏!,	being	𝐏#	(𝑅!×𝐴)	the	missing	part	of	the	

loadings	matrix,	and	𝐏*	((𝐾 − 𝑅!)×𝐴)	the	available	part.	Figure	1	shows	a	scheme	of	this	notation.	

	

Figure	 1.	 Partition	 induced	 in	𝐗	 matrix	 by	 the	missing	 data	 in	 its	 𝑖!"	 row.	 Grey	 squares	 denote	

missing	positions	in	the	data	set.	

	

Using	this	partition,	the	inverse	of	matrix	𝚺! 	can	be	written	as:	

𝚺!!! =
0 0
0 IK-!!

	 (4)	

X	
xiT	

xi#T								xi*T	
xiT	 X#								X*	

P#T					P*T	
rearrange	

	
columns	

SVD	
	

model	

N	

K	 K	

K	

N	

K	

A	
R	

R	 R	



 6 

where	𝐈!!!! 	is	the	identity	matrix	with	𝐾 − 𝑅! 	rows/columns,	according	to	the	missing	data	pattern	

in	𝐱!!.	

Substituting	this	expression	in	Equation	2,	observation	𝐱iT	can	be	computed	as:	

𝐱i=
𝐱i#

𝐱i*
= 𝐏#
𝐏* 𝐏#T 𝐏*T

0 0
0 IK-!!

𝐏#
𝐏*

-1

𝐏#T 𝐏*T
0 0
0 IK-!!

0
xi*

=	

= 𝐏#
𝐏*

𝐏*T𝐏*
-1
𝐏*Txi*=

𝐏# 𝐏*T𝐏*
-1
𝐏*Txi*

𝐏* 𝐏*T𝐏*
-1
𝐏*Txi*

	

(5)	

Alternatively,	the	inverse	of	matrix	𝚿!	can	be	written	as:	

𝚿!
!! =

0 0
0 IN-!!

	 (6)	

where	𝐈!!!! 	 is	 the	 identity	matrix	with	𝑁 − 𝑅!	 rows/columns,	according	to	column	𝐲! .	Following	

Equation	3,	𝐲!	is	therefore	computed	as:	

𝐲k=
𝐲k#

𝐲k*
= 𝐔#
𝐔* 𝐔#T 𝐔*T

0 0
0 IN-!!

𝐔#
𝐔*

-1

𝐔#T 𝐔*T
0 0
0 IN-!!

0
yk
* =	

= 𝐔#
𝐔*

𝐔*T𝐔*
-1
𝐔*Tyk

*=
𝐔# 𝐔*T𝐔*

-1
𝐔*Tyk

*

𝐔* 𝐔*T𝐔*
-1
𝐔*Tyk

*
	

(7)	

where	𝐔#	(𝑅!×𝐴)	and	𝐔*	((𝑁 − 𝑅!)×𝐴)	are	the	missing	and	available	parts	of	𝐔.	

The	MLPCA	 imputation	 step	 of	 the	missing	 values	 𝐱!#!	 is	 the	 same	 as	 the	 PMP	method	 for	 PCA	

model	building	presented	recently	in	14.	The	main	difference	between	MLPCA	algorithm	and	PMP	is	

that	 the	 former	 performs	 the	 imputation	 iteratively	 first	 by	 observations	 and	 then	 by	 variables,	

instead	of	only	by	observations,	as	PMP	does.	And	additionally,	the	convergence	in	PMP	is	achieved	

based	only	on	the	imputed	missing	values,	instead	of	the	imputation	of	the	available	measurements,	

as	it	is	in	MLPCA.	

In	 14	 it	was	 shown	 that	 the	 imputation	 step	 in	 the	 adapted	 PMP	 algorithm	 for	 PCA-MB	 could	 be	

substituted	by	the	regression-based	methods	presented	in	15	(KDR	and	its	variants,	and	TSR).	Most	

of	these	methods	showed	a	superior	performance	than	PMP	across	several	case	studies.	So,	the	idea	

here	consists	of	adapting	the	alternating	imputation	of	MLPCA	algorithm	to	include	the	imputation	
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step	of	the	regression-based	methods,	thus	proposing	a	maximum	likelihood	(ML)	framework:	ML-

KDR,	ML-KDR	with	PCR,	ML-KDR	with	PLS	and	ML-TSR.	

The	imputation	step	of	the	regression-based	missing	data	methods	is:	

𝐱! =
𝐱!#

𝐱!∗
=

𝐒#∗𝐋! 𝐋!!𝐒∗∗𝐋!
!!
𝐋!!𝐱!∗

𝐒∗∗𝐋! 𝐋!!𝐒∗∗𝐋!
!!
𝐋!!𝐱!∗

	 (8)	

where	𝐒	is	the	covariance	matrix	of	𝐗,		and:	

𝐒 = [𝐗#𝐗∗]![𝐗#𝐗∗]/(𝑁 − 1) =  𝐗
#!𝐗# 𝐗#!𝐗∗
𝐗∗!𝐗# 𝐗∗!𝐗∗

/(𝑁 − 1) = 𝐒## 𝐒#∗
𝐒∗# 𝐒∗∗

	 (9)	

The	key	matrix	𝐋	in	Equation	8	particularises	which	method	of	the	framework	is	being	used	for	the	

imputation:	𝐋 = 𝐈	 for	KDR;	𝐋 = 𝐕!:!	 for	KDR	with	PCR,	where	𝐕1:ρ	 is	 the	eigenvector	matrix	of	𝐒∗∗	

and	𝜌 ≤ rank(𝐒∗∗);	𝐋 = 𝐖∗	 for	KDR	with	PLS,	where	𝐖*	 is	 the	 loadings	matrix	of	 the	PLS	model	

𝐓!"# = 𝐗∗!𝐖∗;	and	𝐋 = 𝐏∗	for	TSR.		

Therefore,	to	adapt	the	MLPCA	original	algorithm11	to	use	the	regression-based	methods,	we	have	

to	substitute	the	imputation	step	(Equations	2-3)	by:	

𝐱! = 𝐒𝚲𝒊𝐋𝒊(𝐋!!𝚲!!𝐒𝚲𝒊𝐋𝒊)!!𝐋!!𝚲!!𝐱! 	 (10)	

𝐲! = 𝐒𝚽𝒌𝐋𝒌(𝐋!!𝚽!
!𝐒𝚽𝒌𝐋𝒌)!!𝐋!!𝚽!

!𝐲!	 (11)	

where	𝐋	matrix	 is	 the	same	as	 in	the	regression-based	framework,	particularising	 for	the	missing	

data	pattern	in	row	𝑖	or	column	𝑘.	And:	

𝚲! =
𝟎
IK-!!

	 (12)	

𝚽! =
𝟎

IN-!!
	 (13)	

The	equivalence	between	Equations	10	and	8	is	shown	in	Appendix	B.	For	more	details	on	MLPCA,	

readers	are	referred	to	26,27	and	the	original	paper11.	The	Matlab	source	code	of	 the	algorithm	for	

PCA	model	 building	with	missing	 data	 is	 reproduced	 here	 in	 Appendix	 B	with	 slight	 changes	 to	

introduce	the	imputation	step	of	the	regression-based	methods.	
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3.	 DATA	SETS	AND	COMPARATIVE	STUDY	

Six	 data	 sets	 are	 used	 in	 the	 present	 study	 to	 compare	 the	 results	 of	 the	 different	 imputation	

methods	 included	 in	 the	 framework.	 The	 first	 data	 set	 contains	 FTIR	 miscroscopy	 spectra	 of	 a	

polymer	laminate	consisting	of	three	layers:	polyethylene	(PE),	isophtalic	polyester	(IPE,	presence	

originally	 unknown),	 and	 polyethylene	 terephthalate	 (PET).	 The	 polymer	 was	 scanned	 in	 a	

seventeen	 point	 transect	 across	 the	 different	 layers,	 obtaining	 measurements	 from	 81	

wavelengths28-30.	 The	 second	 case	 study	 consists	 of	 a	 set	 of	 measured	 and	 inferred	 fluxes	 from	

Pichia	 pastoris	 cultures	 on	 heterogeneous	 culture	 media31.	 The	 measured	 fluxes	 were	 collected	

from	a	literature	review;	later	on,	a	grey	modelling	approach	was	applied	to	infer	the	intracellular	

fluxes	according	to	the	observed	extracellular	ones.	From	the	original	data	set	with	3600	scenarios	

and	45	 fluxes,	a	 representative	sample	of	105	 individuals	 is	 selected	 for	 the	present	comparative	

study.	 This	 data	 set	 has	 3	 biologically	 relevant	 PCs.	 Finally,	 a	 simulated	 data	 set,	 with	 100	

observations	 and	 10	 variables,	 is	 used	 to	 compare	 the	 performance	 of	 the	 different	 maximum	

likelihood	methods32,33.	 This	data	 set	 has	4	 eigenvalues	 (3,	 2.5,	 2	 and	1.5)	 explaining	90%	of	 the	

variance	in	data.	

Three	additional	data	sets	are	analysed	here,	taken	from	14,	where	the	adaptation	of	the	regression	

based	methods	to	PCA-MB	was	proposed.	The	 first	one	consists	of	 the	percentage	composition	of	

eight	 fatty	 acids	 in	 75	 olive	 oils	 of	 South	 Apulia34.	 The	 second	 one	 is	 a	 set	 of	 NIR	 spectra	 (750-

1550nm	in	2nm	intervals)	measured	on	40	diesel	 fuels35.	And	the	last	one	is	a	100×10	simulated	

data	set	with	3	components	explaining	40,	30	and	20%	of	variance32,33.	

Two	performance	criteria	are	used	to	compare	the	results	of	the	different	methods.	The	first	one	is	

the	mean	squared	prediction	error	(MSPE):	

𝑀𝑆𝑃𝐸 𝑀𝑒𝑡ℎ𝑜𝑑 =
𝑥!" − 𝑥!"!"#!!"

!!
!!!

!
!!!

𝑁𝐾
	 (14)	

where	xij	 is	the	predicted	value	for	the	𝑗!"	variable	of	the	𝑖!"	observation	in	the	prediction	matrix	

𝐗 = 𝐓𝐏!	 obtained	 from	 the	 complete	 data	 set;	 xij
Method	 the	 analogous	 prediction	 obtained	 after	
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applying	 the	 corresponding	method	 on	 the	 incomplete	 data	 set;	 and	N	 and	K	 are	 the	 number	 of	

rows	and	columns	in	the	data	set,	respectively.	The	original	regression-based	framework	methods	

use,	 as	 convergence	 criterion,	 the	 difference	 between	 consecutive	 imputations	 of	missing	 values.	

Instead,	MLPCA	use	the	difference	between	the	available	measurements	and	their	predictions	from	

the	current	PCA	model.	For	this,	we	decided	to	show	the	MSPEs	for	the	available	measurements	and	

the	missing	ones	separately,	using	Equation	14.		

The	second	criterion	consists	of	the	cosine	between	the	first	loading	vector	obtained	using	the	full	

data	matrix	and	its	corresponding	one	from	the	incomplete	data	set.	The	cosines	of	further	PCs	are	

not	shown,	since	their	values	are	strongly	affected	by	the	deviations	of	the	first	PC14.	

Six	different	 levels	of	missing	values	are	generated	 for	all	data	sets,	 ranging	 from	10%	to	60%	of	

missing	data.	Also,	50	different	MD	patterns	are	generated	for	each	percentage	of	missing	data,	in	

order	 to	 build	 confidence	 intervals	 for	 the	 MSPEs.	 The	 intervals	 are	 built	 based	 on	 the	 LSD	

significance	of	a	three-factor	mixed-effects	ANOVA,	where	method	and	percentage	of	MD	are	fixed-

effect	factors	(and	also	their	interaction),	and	the	replicates	is	the	random-effect	factor	(nested	to	

percentage).	Given	the	positive	skewness	of	MSPE,	a	logarithmic	transformation	is	used	to	ease	the	

visualization	of	the	plots.	

	

4.	 RESULTS	

In	this	section	the	results	of	the	comparative	study	are	presented.	However,	we	decided	to	exclude	

the	results	of	ML-KDR,	ML-KDR	with	PCR	and	ML-KDR	with	PLS	due	 to	 large	computation	 times,	

something	 already	observed	 in	 14,	 and	due	 to	 the	 instability	 of	 some	of	 them,	 especially	ML-KDR	

(also	 observed	 in	 14	with	KDR)	 and	ML-KDR	with	PLS.	Therefore,	 the	 results	 of	MLPCA,	ML-TSR,	

TSR	and	PMP	are	shown,	in	order	to	answer	the	three	research	questions	posed	in	the	Introduction.	

4.1.	FTIR	microspectroscopy	

Figure	 2	 shows	 the	 results	 of	 the	 first	 case	 study.	 The	 two	 upper	 plots,	 A)	 and	 B),	 show	 the	

logarithm	 of	 the	 MSPEs	 and	 the	 cosines	 of	 PC#1,	 respectively.	 Figures	 2C-2D	 show	 also	 the	
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logarithm	 of	 the	 MSPEs	 but	 considering	 only	 the	 measured	 values	 and	 the	 imputed	 values	

separately.	Regarding	Figure	2A,	there	exist	no	statistical	differences	between	MLPCA	and	ML-TSR	

in	all	percentages	of	missing	data.	TSR	and	PMP	statistically	outperform	both	ML	approaches	 for	

low	percentages	 of	missing	data	 (10-20%).	 From	50%	onwards,	 TSR	 is	 superior	 to	PMP,	MLPCA	

and	ML-TSR.	The	 cosines	 shown	 in	Figure	2B	are	 coherent	with	 the	 results	of	 the	MSPEs,	 having	

TSR	the	highest	cosines	from	30%	to	60%.	

	

Figure	 2.	 FTIR	 data	 set	 results.	 A)	 Logarithm	 of	 the	 MSPE	 for	 all	 measurements.	 B)	 Cosines	

associated	to	the	first	PC.	C)	Logarithm	of	the	MSPE	for	the	available	measurements.		D)	Logarithm	

of	 the	 MSPE	 for	 the	 missing	 data.	 The	 dashed	 ellipses	 in	 a)	 mark	 the	 statistically	 significant	

differences	between	groups	of	methods.	In	A)	TSR	is	statistically	superior	to	MLPCA	with	30-40%	

of	MD.	However,	since	there	is	no	method	statistically	significant	from	all	the	rest,	a	single	dashed	

ellipse	encloses	all	of	them.	
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The	results	in	Figure	2C	show	that	TSR	and	PMP	are	superior	to	the	ML	approaches	in	terms	of	the	

measured	 values,	 which	 implies	 that	 the	 PCA	model	 fitted	 once	 the	 data	 is	 imputed	 with	 these	

methods	 is	 closer	 to	 the	 original	 one	 than	 using	 maximum	 likelihood	 estimations.	 Figure	 2D	 is	

indeed	very	similar	to	Figure	2A,	due	to	the	fact	that	the	errors	in	the	imputed	values	between	the	

true	PCA	model	and	the	imputed	one	are	way	larger	than	in	the	measured	values,	as	expected.		

4.2.	P.	pastoris	cultures	on	heterogeneous	culture	media	

The	results	with	the	P.	pastoris	data	set	are	similar	to	the	previous	ones,	both	in	MSPEs	and	cosines	

(see	Figure	3A-3B).	TSR	and	PMP	achieve	the	statistically	best	performance	from	20%-40%	of	MD;	

and	again,	from	50%	onwards,	TSR	becomes	the	best	approach,	being	PMP	superior	to	MLPCA	and	

ML-TSR.	The	performances	of	TSR	and	PMP	are	 indeed	 coherent	with	 the	 results	 observed	 in	 14,	

which	confirm	the	results	obtained	in	that	paper.	The	cosines	shown	in	Figure	3B	are	coherent	with	

the	MSPE	values.	The	lower	is	the	logarithm	of	the	MSPE,	the	closer	are	the	loading	vectors	of	the	

reconstructed	matrix	to	the	actual	ones.	
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Figure	3.	P.	pastoris	data	set	 results.	A)	Logarithm	of	 the	MSPE	 for	all	measurements.	B)	Cosines	

associated	to	the	first	PC.	C)	Logarithm	of	the	MSPE	for	the	available	measurements.		D)	Logarithm	

of	 the	 MSPE	 for	 the	 missing	 data.	 The	 dashed	 ellipses	 in	 A)	 mark	 the	 statistically	 significant	

differences	between	groups	of	methods.	

	

Regarding	Figures	3C-3D,	 the	performance	of	all	methods	 is	also	similar	 to	 the	 first	example.	For	

low	 percentages	 of	MD,	 the	 differences	 among	methods	 are	 smaller	 in	 the	measured	 values,	 but	

from	30%	of	MD	onwards,	the	PCA	model	obtained	with	TSR	imputation	resembles	more	to	the	real	

one.		

4.3	Simulated	data	set	

In	the	Simulated	data	set	with	4	PCs,	the	differences	among	TSR,	ML-TSR,	PMP	and	MLPCA	are	not	

statistically	significant	for	low	percentages	of	missing	values	(10-20%)	(see	Figure	4A).	With	30%	
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of	MD,	TSR	becomes	statistically	 the	best	method	and	PMP	the	worst	one.	This	 is	something	 that	

was	observed	in	14,	also	using	a	simulated	data	set32,33.	The	higher	is	the	percentage	of	missing	data,	

the	 more	 difficult	 is	 to	 impute	 properly	 for	 PMP.	 For	 higher	 percentages	 (30-60%),	 there	 are	

statistical	 differences	 among	 all	methods:	 TSR	maintains	 the	 best	 performance,	 followed	 by	ML-

TSR,	MLPCA	and	PMP.	This	is	the	first	case	study	where	there	exist	differences	between	MLPCA	and	

ML-TSR,	being	the	 latter	statistically	superior.	These	differences	 in	the	MSPEs	 can	also	be	seen	 in	

Figure	4B,	where	all	methods	but	TSR	show	huge	deviations	from	the	true	principal	coordinate	of	

the	data	with	low-medium	percentages	of	MD	(10-40%).	

	

Figure	4.	 Simulated	data	set	 results.	A)	Logarithm	of	 the	MSPE	 for	all	measurements.	B)	Cosines	

associated	to	the	first	PC.	C)	Logarithm	of	the	MSPE	for	the	available	measurements.		D)	Logarithm	

of	 the	 MSPE	 for	 the	 missing	 data.	 The	 dashed	 ellipses	 in	 A)	 mark	 the	 statistically	 significant	

differences	between	groups	of	methods.	
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In	this	third	example	the	differences	among	methods	regarding	the	measured	values	are	narrower	

(see	Figure	4C),	but	still	showing	the	superiority	of	TSR.	

4.4	Additional	data	sets	

Three	more	data	sets	are	used	to	compare	the	performance	of	the	ML-based	methods	against	PMP	

and	 TSR	 in	 its	 original	 form:	 the	 olive	 oil	 data	 set,	 the	 diesel	 NIR	 data	 set,	 and	 a	 3-component	

simulated	data	set.	The	figures	containing	the	logarithm	of	the	MSPEs	and	the	cosines	associated	to	

the	first	component	are	available	as	Supporting	Information	of	this	paper.		

Summarizing	the	results,	in	these	data	sets	the	performance	of	TSR	is	statistically	superior	to	PMP	

(as	proven	in	14),	and	to	MLPCA	and	ML-TSR	for	medium-high	percentages	(30-60%)	and	also	for	

low	percentages	 (10-20%)	 in	 the	olive	oil	and	diesel	NIR	data	set.	Also,	 the	reconstruction	of	 the	

available	measurements	with	TSR	is	more	similar	to	the	PCA	on	complete	data	than	the	ML-based	

approaches	in	both	data	sets.	These	results	are	coherent	with	sections	4.1-4.2.	Comparing	ML-TSR	

and	MLPCA,	the	former	yields	better	results	than	MLPCA	for	high	percentages	of	missing	data	(50-

60%)	 in	 the	 3-component	 simulated	 data	 set,	 as	 happened	 in	 section	 4.3.	with	 the	 4-component	

simulated	data	set.		

	

5.	 CONCLUSIONS	

To	conclude,	it	is	worth	to	remember	the	research	questions	posed	at	the	beginning	of	the	paper:	

• Are	the	imputed	values	of	MLPCA	and	PMP	for	model	building	equal?	The	answer	is	no.	The	

PMP	 imputation	step	performed	alternatively	by	 rows	and	columns	 in	MLPCA	drives	 the	

imputation	in	a	different	direction	than	performing	it	only	by	columns,	as	PMP	does.	Based	

on	 the	 six	 data	 sets	 analysed	 here,	 PMP,	 if	 converges,	 has	 better	 results	 than	 MLPCA.	

However,	 PMP	 suffered	 from	 convergence	 problems	 in	 some	 case	 studies,	while	MLPCA	

converge	in	all	data	sets	and	all	MD	percentages.		
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• Does	ML-TSR	outperform	the	imputation	of	MLPCA?	The	answer,	based	on	the	case	studies	

analysed	here,	is	that	when	the	latent	structure	is	complex,	and	the	percentage	of	missing	

data	 is	high,	ML-TSR	may	outperform	MLPCA.	 In	other	 cases,	 the	overall	 results	have	no	

statistically	significant	differences.	However,	MLPCA	tends	to	be	between	2-5	times	faster	

than	ML-TSR.	

• Does	 MLPCA	 or	 ML-TSR	 outperform	 the	 original	 TSR	 algorithm?	 The	 answer	 is	 no.	 TSR	

outperforms	 the	 ML	 approaches	 for	 medium-high	 percentages	 of	 missing	 data.	 For	 low	

percentages,	depending	on	the	case	study	analysed,	it	is	statistically	superior	or	there	exist	

no	statistical	difference	compared	to	the	other	methods.		

Finally,	 we	 recommend	 the	 use	 of	 trimmed	 score	 regression	 over	 MLPCA	 for	 PCA	 model	

building	 with	 missing	 data,	 since	 the	 both	 the	 reconstruction	 of	 the	 available	 and	 imputed	

values	is	statistically	more	accurate	than	using	MLPCA	or	ML-TSR.	

	

Appendix	A.	Regression-based	imputation	step	in	MLPCA.	

The	equivalence	between	Equations	10	and	8	is	proven	here.	Let	us	assume	that	we	rearrange	the	

values	in	row	𝐱!!	to	have	the	𝑅! 	missing	values,	𝐱!#!,	at	the	first	positions,	and	the	remaining	𝐾 − 𝑅! 	

available	ones,	𝐱!#!,	at	the	end.	We	can	use	Equation	4	in	Equation	10	to	introduce	the	extension	of	

the	missing	data	partition,	𝐗 = [𝐗#𝐗∗].	Bearing	 in	mind	 that	 the	decomposition	of	 the	covariance	

matrix	of	𝐗	(see	Equation	9),	and	matrix	𝚲! 	(Equation	12),	Equation	10	can	be	written	as:	

𝐱! = 𝐒𝚲𝒊𝐋𝒊(𝐋!!𝚲!!𝐒𝚲𝒊𝐋𝒊)!!𝐋!!𝚲!!𝐱! =
𝐒## 𝐒#∗
𝐒∗# 𝐒∗∗

𝟎
IK-!!

𝐋𝒊(𝐋!![𝟎 𝐈!!!!]
𝐒## 𝐒#∗
𝐒∗# 𝐒∗∗

𝟎
IK-!!

𝐋𝒊)!!𝐋!![𝟎 𝐈!!!!]𝐱!

= 𝐒## 𝐒#∗
𝐒∗# 𝐒∗∗

𝟎
Li

([𝟎 𝐋!!]
𝐒## 𝐒#∗
𝐒∗# 𝐒∗∗

𝟎
Li
)!![𝟎 𝐋!!]

0
xi*

=
𝐒#*𝐋𝒊 𝐋!!𝐒**𝐋𝒊

-1
𝐋!!xi*

𝐒**𝐋𝒊 𝐋!!𝐒**𝐋𝒊
-1𝐋!!xi*

	

(15)	

The	proof	using	Equation	11	is	analogous;	substituting	𝐱!	by	𝐲!,	changing	the	subindices	𝑖	by	𝑘	and	

the	matrix	𝚲! 	 by	𝚽! ,	 and	 bearing	 in	mind	 that	 the	𝐋!	matrix	 is	 obtained	 using	 the	missing	 data	

pattern	of	𝐲!.	
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Appendix	B.	Matlab	source	code.	

The	 source	 code	 for	 MLPCA	 is	 shown	 here.	 It	 consists	 of	 a	 modification	 of	 the	 original	 MLPCA	

algorithm11	 to	 perform	 the	 imputation	 step	using	 the	 regression	based	 framework	methods.	 The	

function	mlpmp.m	correspond	to	the	original	imputation	step	of	MLPCA,	which	is	equivalent	to	the	

PMP	method	for	PCA	model	building,	as	proved	in	this	paper.	Only	the	ML	version	of	TSR	is	shown,	

since	the	other	approaches	are	not	competitive.	The	source	code	for	the	original	TSR	and	PMP	can	

be	found	in	14.	

function [U,S,V,SOBJ,ErrFlag,count]=mlpca_generic(X,stdX,p,type) 

% 

%From Andrews and Wentzell (1997). Analytica Chimica Acta 350, 341-352 

% 

% This function performs MLPCA with missing data 

% 

% X     mxn matrix of observations. 

% stdX  mxn matrix of standard deviations associated with X (zeros for 

missing meassurements). 

% p     is the model dimensionality. 

% type  MD method chosen: 

%       0 MLPCA, equivalent to PMP 

%       1 MLTSR (maximum likelihood TSR) 

%       2 MLPCR (maximum likelihood KDR with PCR) 

% 

% U,S,V     the pseudo-svd parameters. 

% SOBJ      value of the objetive function. 

% ErrFlag   indicates exit conditions: 0 = normal termination, 1 = max 

iterations exceeded. 

% count     number of iterations needed 
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% 

% Initialization 

% 

convlim=1e-10; 

maxiter=500; 

XX=X; 

varX=stdX.^2; 

[i,j]=find(varX==0); 

errmax=max(max(varX)); 

for k=1:length(i), 

    varX(i(k),j(k))=1e10*errmax; 

end 

n=length(XX(1,:)); 

% 

% Generate initial estimates 

% 

for i=1:length(X(:,1)), 

    for j=1:length(X(:,1)), 

        denom=min([nnz(X(i,:)) nnz(X(j,:))]); 

        CV(i,j)=(X(i,:)*X(j,:)')/denom; 

    end 

end 

[U,S,V]=svd(CV,0); 

U0=U(:,1:p); 

MLXaux=XX; 

% 

% Loop for alternating least squares 

% 

type 

count=0; 
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Sold=0; 

ErrFlag=-1; 

while ErrFlag<0, 

    count=count+1;   %%%% 

    Sobj=0; 

    MLX=zeros(size(XX)); 

    for i=1:n, 

        % Method selection 

        switch type 

            case 0 

                [MLX, Q]=mlpmp(XX,varX, U0, n, i, MLX); 

  case 1 

                [MLX, Q]=mltsr(XX, MLXaux', varX, U0, n, i, MLX);  

  otherwise 

   error('Wrong method') 

        end  

        dx=XX(:,i)-MLX(:,i); 

   Sobj=Sobj+dx'*Q*dx; 

    end     

    if rem(count,2)==1, 

        abs(Sold-Sobj)/Sobj; 

        if(abs(Sold-Sobj)/Sobj)<convlim, 

            ErrFlag=0; 

        elseif count>maxiter, 

            ErrFlag=1; 

        end 

    end 

    if ErrFlag<0, 

        Sold=Sobj; 

        [U,S,V]=svd(MLX,0); 
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        XX=XX'; 

        varX=varX'; 

        n=length(XX(1,:)); 

        U0=V(:,1:p); 

        MLXaux=MLX'; 

    end 

end 

% 

% Finished 

% 

[U,S,V]=svd(MLX,0); 

U=U(:,1:p); 

S=S(1:p,1:p); 

V=V(:,1:p); 

SOBJ=Sobj; 

 

function [ MLX, Q] = mlpmp( XX, varX, U0, n, i, MLX ) 

% MLPCA imputation, equivalent to PMP 

Q=diag(varX(:,i).^(-1)); 

F=inv(U0'*Q*U0); 

MLX(:,i)=U0*F*U0'*Q*XX(:,i); 

end 

 

function [ MLX, Q] = mltsr( XX, MLXaux, varX, U0, n, i, MLX ) 

% MLPCA with TSR missing data imputation 

Q=diag(varX(:,i).^(-1)); 

CV=cov(MLXaux); 

MLX(:,i)= CV*Q*U0*pinv(U0'*Q*CV*Q*U0)*U0'*Q*XX(:,i); 

end 
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Supporting	Information	

Three	additional	figures	with	the	results	of	the	comparative	study	using	the	last	three	data	sets	are	

available	online.		

	

Acknowledgements	

Research	in	this	study	was	partially	supported	by	the	Spanish	Ministry	of	Science	and	Innovation	

and	FEDER	funds	from	the	European	Union	through	grant	DPI2011-	28112-C04-02	and	DPI2014-

55276-C5-1R,	and	the	Spanish	Ministry	of	Economy	and	Competitiveness	through	grant	ECO2013-

43353-R.		

	

REFERENCES		

1.	 Jolliffe	IT,	Principal	Component	Analysis.	Springer-Verlag,	NY,	USA,	1986.	

2.	 Wentzell	 PD,	 Andrews	 DT,	 Hamilton	 DC,	 Faber	 K,	 Kowalski	 BR,	 Maximum	 likelihood	

principal	component	analysis,	J.	Chemometr.	1997,	11,	339-366.	

3.	 Ristolainen	 M,	 Alén	 R,	 Malkavaara	 P,	 Pere	 J,	 Reflectance	 FTIR	 microspectroscopy	 for	

studying	effect	of	Xylan	removal	on	unbleached	and	bleached	birch	kraft	pulps,	Holzforschung	2002,	

56(5),	513-521.	

4.	 Keenan	MR,	Maximum	likelihood	principal	component	analysis	of	time-of-flight	secondary	

ion	mass	spectrometry	spectral	images,	J.	Vac.	Sci.	Technol.	A	2005,	23(4),	746-750.	

5.	 Sang	WC,	Martin	 EB,	Morris	 AJ,	 Lee	 I-B,	 Fault	 detection	 based	 on	 a	maximum-likelihood	

principal	component	analysis	(PCA)	mixture,	Ind.	Eng.	Chem.	Res.	2005,	44(7),	2316-2327.	

6.	 Karakach	TK,	Wentzell	PD,	Walter	JA,	Characterization	of	the	measurement	error	structure	

in	1D	1H	NMR	data	for	metabolomics	studies,	Anal.	Chim.	Acta	2009,	636(2),	163-174.	 	



 21 

7.	 Wentzell	PD,	Hou	S,	Exploratory	data	analysis	with	noisy	measurements,	 J.	Chemometrics	

2012,	26(6),	264-281.	

8.	 Mailier	 J,	 Remy	 M,	 Vande	 Wouwer	 A,	 Stoichiometric	 identification	 with	 maximum	

likelihood	principal	component	analysis,	J.	Math.	Biol.	2013,	67(4),	739-765.	

9.	 Hoefsloot	 HCJ,	 Verouden	 MPH,	 Westerhuis	 JA,	 Smilde	 AK,	 Maximum	 likelihood	 scaling	

(MALS),	J.	Chemometr.	2006,	20(3-4),	120-127.	

10.	 Dadashi	M,	Abdollahi	H,	Tauler	R,	Maximum	Likelihood	Principal	Component	Analysis	 as	

initial	 projection	 step	 in	 Multivariate	 Curve	 Resolution	 analysis	 of	 noisy	 data,	 Chem	 Intell.	 Lab.	

2012,	118,	33-40.	

11.	 Andrews	 DT,	 Wentzell	 PD,	 Applications	 of	 maximum	 likelihood	 principal	 component	

analysis:	incomplete	data	sets	and	calibration	transfer,	Anal.	Chim.	Acta	1997,	350(3),	341-352.	

12.	 Ho	 P,	 Silva	 MCM,	 Hogg	 TA,	 Multiple	 imputation	 and	 maximum	 likelihood	 principal	

component	 analysis	 of	 incomplete	multivariate	data	 from	a	 study	of	 the	 ageing	of	 port,	 Chemom.	

Intell.	Lab.	2001,	55,	1-11.	

13.	 Stanimirova	 I,	 Practical	 approaches	 to	 principal	 component	 analysis	 for	 simultaneously	

dealing	with	missing	and	censored	elements	in	chemical	data,	Anal.	Chim.	Acta	2013,	796,	27-37.	

14.	 Folch-Fortuny	A,	Arteaga	F,	Ferrer	A,	PCA	model	building	with	missing	data:	new	proposals	

and	a	comparative	study,	Chemom.	Intell.	Lab.	2015,	146,	77-88.	

15.	 Arteaga	 F,	 Ferrer	 A,	 Dealing	 with	 missing	 data	 in	 MSPC:	 several	 methods,	 different	

interpretations,	some	examples,	J.	Chemometr.	2002,	16,	408-418.	

16.	 Arteaga	F,	Ferrer	A,	Framework	for	regression-based	missing	data	imputation	methods	in	

on-line	MSPC,	J.	Chemometr.	2005,	19,	439-447.	

17.	 Walczak	B,	Massart	DL,	Dealing	with	missing	data	Part	I,	Chemom.	Intell.	Lab.	2001,	58,	15-

27.	

18.	 Nelson	 PRC,	 Taylor	 PA,	 MacGregor	 JF,	 Missing	 data	 methods	 in	 PCA	 and	 PLS:	 Score	

calculations	with	incomplete	observations,	Chemom.	Intell.	Lab.	1996,	35,	45-65.	



 22 

19.	 Wold	 S,	 Albano	 C,	 Dunn	 WJ,	 Esbensen	 K,	 Hellberg	 S,	 Johansson	 E,	 Sjöström	 M,	 Pattern	

recognition:	 finding	 and	 using	 regularities	 in	multivariate	 data,	 in:	Martens	H,	 Russwurm	H	 (Jr.)	

(Eds.),	Food	Research	and	Data	Analysis,	vol.	3,	Applied	Science	Pub:	London,	UK,	1983,	183–185.	

20.		 López-Negrete	 de	 la	 Fuente	 R,	 García-Muñoz	 S,	 Biegler	 LT,	 An	 efficient	 nonlinear	

programming	strategy	for	PCA	models	with	incomplete	data	sets,	J.	Chemom.,	2010,	24,	301–311.	

21.		 Schafer	JL,	Analysis	of	Incomplete	Multivariate	Data,	CRC	Press:	New	York,	USA,	1997.	

22.	 ProSensus	 MultiVariate	 release	 15.02,	 ProSensus	 Inc,	 Ancaster,	 Ontario,	 Canada,	 2015.	

(http://www.prosensus.com).	

23.	 SIMCA	release	14,	Umetrics,	Umea,	Sweden,	2015.	(http://www.umetrics.com).	

24.	 PLS	 Toolbox	 release	 7.9.5,	 Eigenvector	 Research	 Inc,	 Manson,	 Washington,	 USA,	 2015.	

(http://www.eigenvector.com).	

25.	 Folch-Fortuny	 A,	 Arteaga	 F,	 Ferrer	 A,	 Missing	 Data	 Imputation	 Toolbox	 for	 MATLAB,	

submitted.	

26.	 Nelson	 PRC,	 Treatment	 of	 missing	 measurements	 in	 PCA	 and	 PLS	 models,	 Ph.D.	

Dissertation,	 Department	 of	 Chemical	 Engineering,	 McMaster	 University,	 Hamilton,	 Ontario,	

Canada,	2002.	

27	 Arteaga	 F,	 Control	 estadístico	 multivariante	 de	 procesos	 con	 datos	 faltantes	 mediante	

análisis	de	componentes	principales,	Ph.D.	thesis	Universidad	Politécnica	de	Valencia,	2003.		

28.	 Guilment	 J,	Markel	 S,	Windig	W,	 Infrared	 chemical	micro-imaging	 assisted	 by	 interactive	

self-modeling		multivariate	analysis,	Appl.	Spectr	1994,	48,	320-326.			

29.	 Windig	 W,	 Markel	 S,	 Simple-to-use	 interactive	 self-modeling	 mixture	 analysis	 of	 FTIR	

microscopy	data,	J.	Mol.	Struct.	1993,	292,	161-170.										

30.	 Windig	W,	 Spectral	data	 files	 for	 self-modeling	 curve	 resolution	with	 examples	using	 the	

Simplisma	approach,	Chemom.	Intell.	Lab.	1997,	36,	3-16.	



 23 

31.	 González-Martínez	JM,	Folch-Fortuny	A,	Llaneras	F,	Tortajada	M,	Picó	J,	Ferrer	A,	Metabolic	

flux	understanding	of	Pichia	pastoris	grown	on	heterogeneous	culture	media,	Chemom.	Intell.	Lab.	

2014,	134,	89-99	

32.	 Arteaga	 F,	 Ferrer	 A,	 How	 to	 simulate	 normal	 data	 sets	 with	 the	 desired	 correlation	

structure,	Chemom.	Intell.	Lab.	2010,	101,	38-42.	

33.	 Arteaga	 F,	 Ferrer	 A,	 Building	 covariance	 matrices	 with	 the	 desired	 structure,	 Chemom.	

Intell.	Lab.	2013,	127,	80-88.	

34.	 Forina	M,	Armanino	C,	Lanteri	S,	Tiscornia	E,	Classification	of	olive	oils	from	their	fatty	acid	

composition,	 in:	 Martens	 H,	 Russwurm	 Jr	 H.	 (Eds.),	 Food	 Research	 and	 Data	 Analysis,	 Applied	

Science	Pub,	London	1983,	pp.	189–214.	

35.	 Hutzler	SA,	Bessee	GB,	Remote	Near-Infrared	Fuel	Monitoring	System,	Interim	Report,	U.S.	

Army	TARDEC	Fuels	and	Lubricants	Research	Facility,	Southwest	Research	Institute,	San	Antonio,	

United	States,	1997.	

	


